6,444 research outputs found

    Acneiform dermatoses

    Get PDF
    Acneiform dermatoses are follicular eruptions. The initial lesion is inflammatory, usually a papule or pustule. Comedones are later secondary lesions, a sequel to encapsulation and healing of the primary abscess. The earliest histological event is spongiosis, followed by a break in the follicular epithelium. The spilled follicular contents provokes a nonspecific lymphocytic and neutrophilic infiltrate. Acneiform eruptions are almost always drug induced. Important clues are sudden onset within days, widespread involvement, unusual locations (forearm, buttocks), occurrence beyond acne age, monomorphous lesions, sometimes signs of systemic drug toxicity with fever and malaise, clearing of inflammatory lesions after the drug is stopped, sometimes leaving secondary comedones. Other cutaneous eruptions that may superficially resemble acne vulgaris but that are not thought to be related to it etiologically are due to infection (e.g. gramnegative folliculitis) or unknown causes (e.g. acne necrotica or acne aestivalis)

    Validation of simulated real world TCP stacks

    Get PDF
    The TCP models in ns-2 have been validated and are widely used in network research. They are however not aimed at producing results consistent with a TCP implementation, they are rather designed to be a general model for TCP congestion control. The Network Simulation Cradle makes real world TCP implementations available to ns-2: Linux, FreeBSD and OpenBSD can all be simulated as easily as using the original simplified models. These simulated TCP implementations can be validated by directly comparing packet traces from simulations to traces measured from a real network. We describe the Network Simulation Cradle, present packet trace comparison results showing the high degree of accuracy possible when simulating with real TCP implementations and briefly show how this is reflected in a simulation study of TCP throughput

    Proton transport in biological systems can be probed by two-dimensional infrared spectroscopy

    Get PDF
    We propose a new method to determine the proton transfer (PT) rate in channel proteins by two-dimensional infrared (2DIR) spectroscopy. Proton transport processes in biological systems, such as proton channels, trigger numerous fundamental biochemical reactions. Due to the limitation in both spatial and time resolution of the traditional experimental approaches, describing the whole proton transport process and identifying the rate limiting steps at the molecular level is challenging. In the present paper, we focus on proton transport through the Gramicidin A channel. Using a kinetic PT model derived from all-atom molecular dynamics simulations, we model the amide I region of the 2DIR spectrum of the channel protein to examine its sensitivity to the proton transport process. We demonstrate that the 2DIR spectrum of the isotope-labeled channel contain information on the PT rate, which may be extracted by analyzing the antidiagonal linewidth of the spectral feature related to the labeled site. Such experiments in combination with detailed numerical simulations should allow the extraction of site dependent PT rates, providing a method for identifying possible rate limiting steps for proton channel transfer.

    Handover parameter optimization in LTE self-organizing networks

    Get PDF
    This paper presents a self-optimizing algorithm that tunes the handover (HO) parameters of a LTE (Long-Term Evolution) base station in order to improve the overall network performance and diminish negative effects (call dropping, HO failures). The proposed algorithm picks the best hysteresis and time-to-trigger combination for the current network status. We examined the effects of this self-optimizing algorithm in a realistic scenario setting and the results show an improvement from the static value settings

    Exciton-Exciton Annihilation Is Coherently Suppressed in H-Aggregates, but Not in J-Aggregates

    Get PDF
    We theoretically demonstrate a strong dependence of the annihilation rate between (singlet) excitons on the sign of dipole-dipole couplings between molecules. For molecular H-aggregates, where this sign is positive, the phase relation of the delocalized two-exciton wavefunctions causes a destructive interference in the annihilation probability. For J-aggregates, where this sign is negative, the interference is constructive instead, as a result of which no such coherent suppression of the annihilation rate occurs. As a consequence, room temperature annihilation rates of typical H- and J-aggregates differ by a factor of ~3, while an order of magnitude difference is found for low-temperature aggregates with a low degree of disorder. These findings, which explain experimental observations, reveal a fundamental principle underlying exciton-exciton annihilation, with major implications for technological devices and experimental studies involving high excitation densities

    Ab initio Bogoliubov coupled cluster theory for open-shell nuclei

    Get PDF
    Ab initio many-body methods address closed-shell nuclei up to mass A ~ 130 on the basis of realistic two- and three-nucleon interactions. Several routes to address open-shell nuclei are currently under investigation, including ideas which exploit spontaneous symmetry breaking. Singly open-shell nuclei can be efficiently described via the sole breaking of U(1)U(1) gauge symmetry associated with particle number conservation, to account for their superfluid character. The present work formulates and applies Bogoliubov coupled cluster (BCC) theory, which consists of representing the exact ground-state wavefunction of the system as the exponential of a quasiparticle excitation cluster operator acting on a Bogoliubov reference state. Equations for the ground-state energy and cluster amplitudes are derived at the singles and doubles level (BCCSD) both algebraically and diagrammatically. The formalism includes three-nucleon forces at the normal-ordered two-body level. The first BCC code is implemented in mm-scheme, which will eventually permit the treatment of doubly open-shell nuclei. Proof-of-principle calculations in an Nmax=6N_{\text{max}}=6 spherical harmonic oscillator basis are performed for 16,18,20^{16,18,20}O, 18^{18}Ne, 20^{20}Mg in the BCCD approximation with a chiral two-nucleon interaction, comparing to results obtained in standard coupled cluster theory when applicable. The breaking of U(1)U(1) symmetry is monitored by computing the variance associated with the particle-number operator. The newly developed many-body formalism increases the potential span of ab initio calculations based on single-reference coupled cluster techniques tremendously, i.e. potentially to reach several hundred additional mid-mass nuclei. The new formalism offers a wealth of potential applications and further extensions dedicated to the description of ground and excited states of open-shell nuclei.Comment: 22 pages, 13 figure
    corecore